skip to main content


Search for: All records

Creators/Authors contains: "Canagaratna, Manjula R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract. Oxidation of organic compounds in the atmosphere produces an immenselycomplex mixture of product species, posing a challenge for both theirmeasurement in laboratory studies and their inclusion in air quality andclimate models. Mass spectrometry techniques can measure thousands of thesespecies, giving insight into these chemical processes, but the datasetsthemselves are highly complex. Data reduction techniques that groupcompounds in a chemically and kinetically meaningful way provide a route tosimplify the chemistry of these systems but have not been systematicallyinvestigated. Here we evaluate three approaches to reducing thedimensionality of oxidation systems measured in an environmental chamber:positive matrix factorization (PMF), hierarchical clustering analysis (HCA),and a parameterization to describe kinetics in terms of multigenerationalchemistry (gamma kinetics parameterization, GKP). The evaluation isimplemented by means of two datasets: synthetic data consisting of athree-generation oxidation system with known rate constants, generationnumbers, and chemical pathways; and the measured products of OH-initiatedoxidation of a substituted aromatic compound in a chamber experiment. Wefind that PMF accounts for changes in the average composition of allproducts during specific periods of time but does not sort compounds intogenerations or by another reproducible chemical process. HCA, on the otherhand, can identify major groups of ions and patterns of behavior andmaintains bulk chemical properties like carbon oxidation state that can beuseful for modeling. The continuum of kinetic behavior observed in a typicalchamber experiment can be parameterized by fitting species' time traces tothe GKP, which approximates the chemistry as a linear, first-order kineticsystem. The fitted parameters for each species are the number of reaction stepswith OH needed to produce the species (the generation) and an effectivekinetic rate constant that describes the formation and loss rates of thespecies. The thousands of species detected in a typical laboratory chamberexperiment can be organized into a much smaller number (10–30) of groups,each of which has a characteristic chemical composition and kinetic behavior.This quantitative relationship between chemical and kinetic characteristics,and the significant reduction in the complexity of the system, provides anapproach to understanding broad patterns of behavior in oxidation systemsand could be exploited for mechanism development and atmospheric chemistrymodeling. 
    more » « less
  3. Abstract. Aromatic hydrocarbons make up a large fraction of anthropogenic volatile organic compounds and contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Four toluene and four 1,2,4-trimethylbenzene (1,2,4-TMB) photooxidation experiments were performed in an environmental chamber under relevantpolluted conditions (NOx∼10 ppb). An extensive suite of instrumentation including two proton-transfer-reaction mass spectrometers (PTR-MS) and two chemical ionisation mass spectrometers (NH4+ CIMS and I− CIMS) allowed for quantification of reactive carbon in multiple generations of hydroxyl radical (OH)-initiated oxidation. Oxidation of both species produces ring-retaining products such as cresols, benzaldehydes, and bicyclic intermediate compounds, as well as ring-scission products such as epoxides and dicarbonyls. We show that the oxidation of bicyclic intermediate products leads to the formation of compounds with high oxygen content (an O:C ratio of up to 1.1). These compounds, previously identified as highly oxygenated molecules (HOMs), are produced by more than one pathway with differing numbers of reaction steps with OH, including both auto-oxidation and phenolic pathways. We report the elemental composition of these compounds formed under relevant urban high-NO conditions. We show that ring-retaining products for these two precursors are more diverse and abundant than predicted by current mechanisms. We present the speciated elemental composition of SOA for both precursors and confirm that highly oxygenated products make up a significant fraction of SOA. Ring-scission products are also detected in both the gas and particle phases, and their yields and speciation generally agree with the kinetic model prediction. 
    more » « less
  4. Glass transitions from liquid to semi-solid and solid phase states have important implications for reactivity, growth, and cloud-forming (cloud condensation nuclei and ice nucleation) capabilities of secondary organic aerosols (SOAs). The small size and relatively low mass concentration of SOAs in the atmosphere make it difficult to measure atmospheric SOA glass transitions using conventional methods. To circumvent these difficulties, we have adapted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols. Aerosol particles to be studied are deposited in the form of a thin film onto an interdigitated electrode (IDE) using electrostatic precipitation. Dielectric spectroscopy provides dipole relaxation rates for organic aerosols as a function of temperature (373 to 233 K) that are used to calculate the glass transition temperatures for several cooling or heating rates. IDE-enabled broadband dielectric spectroscopy (BDS) was successfully used to measure the kinetically controlled glass transition temperatures of aerosols consisting of glycerol and four other compounds with selected cooling and heating rates. The glass transition results agree well with available literature data for these five compounds. The results indicate that the IDE-BDS method can provide accurate glass transition data for organic aerosols under atmospheric conditions. The BDS data obtained with the IDE-BDS technique can be used to characterize glass transitions for both simulated and ambient organic aerosols and to model their climate effects. 
    more » « less
  5. null (Ed.)
    Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenicemissions of organic compounds, constitutes a substantial fraction of themass of submicron aerosol in populated areas around the world andcontributes to poor air quality and premature mortality. However, theprecursor sources of ASOA are poorly understood, and there are largeuncertainties in the health benefits that might accrue from reducinganthropogenic organic emissions. We show that the production of ASOA in 11urban areas on three continents is strongly correlated with the reactivityof specific anthropogenic volatile organic compounds. The differences inASOA production across different cities can be explained by differences inthe emissions of aromatics and intermediate- and semi-volatile organiccompounds, indicating the importance of controlling these ASOA precursors.With an improved model representation of ASOA driven by the observations,we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which isover an order of magnitude higher than prior studies. A sensitivity casewith a more recently proposed model for attributing mortality to PM2.5(the Global Exposure Mortality Model) results in up to 900 000 deaths. Alimitation of this study is the extrapolation from cities with detailedstudies and regions where detailed emission inventories are available toother regions where uncertainties in emissions are larger. In addition tofurther development of institutional air quality management infrastructure,comprehensive air quality campaigns in the countries in South and CentralAmerica, Africa, South Asia, and the Middle East are needed for furtherprogress in this area. 
    more » « less